Waking up the sleeping giant finding the best fit & thinking in pathways

21 June 2010

Maja Slingerland & Ken Giller

Plant Production Systems Group

An 'uniquely' African green revolution

Kofi Annan called for '*an uniquely African green revolution in the 21st Century*'

Recognising:

- the rich diversity of Africa's people, soils and farming practices
- the urgent need to increase agricultural productivity

We need to understand diversity & heterogeneity and try to find patterns to target intervention

Farmer(s) are not all the same!!

Resource-rich farm

Resourcepoor farm

© Pablo Tittonnell, Western Kenya

Partial nutrient balances at farm scale (in Murewa Zimb)

Farm resource group

Zingore, Murwira, Delve & Giller (2007) *Agric Ecosyst Environ.* 119, 112-126.

Fields are not all the same !! (soil fertility)

© Ken Giller

Soi fertility status for agroecologcial zones & fields within farms in Burkina Faso

Table 1. Soil fertility status for different agroecological zones (Windmeijer and Andriesse, 1993) and for various fields within a farm in Burkina Faso (Prudencio *et al*, 1993). Home gardens are near the homestead, bush fields furthest away from the homestead and village fields are at intermediate distances.

Area Organic C (g kg ⁻¹)		Total N (g kg ⁻¹)	Available P (mg kg ⁻¹)	Exchangeable K (mmol kg ⁻¹)
Agroecozones (0-20 cm):				
Equatorial forest	24.5	1.6	NA	NA
Guinea savanna	11.7	1.4	NA	NA
Sudan savanna	3.3	0.5	NA	NA
Fields within a village:				
Home garden	11-22	0.9-1.8	20-220	4.0-24
Village field	5-10	0.5-0.9	13-16	4.1-11
Bush field	2–5	0.2-0.5	5–16	0.6-1

NA = not applicable.

VanLauwe et al. Outlook on **Agriculture** Vol 39 no1, 2010 pp. 17-24

Effects of management & fertilizers on-farm

Tittonell, Vanlauwe, Corbeels, Giller (2008) Plant Soil DOI: 10.1007/s11104-008-9676-3

VanLauwe et al, Outlook on AGRICULTURE Vol 39, No 1, 2010, pp 17–24

Yield without nutrient inputs

Nutrient input

Infield

Fertilizer N use efficiency = 50 kg grain/kg N (after 3 years of FYM applicatio

Fertilizer N use efficiency = 50 kg grain/kg N

Fertilizer N use efficiency <5 kg grain/kg N

Nitrogen fixing Legumes

Look promising Many existing technologies Reality?

Potential solutions - Nitrogen fixing legumes

Legume green manures

Grain legumes

Legume tree

fallows

Legume forages

Legume green manures on smallholder farms

Participatory evaluation of legume technologies

- First choice grain legumes
- Second choice multi-purpose grain legumes
- Third choice fodder legumes, fodder trees
- Fourth choice woody legumes

- ...very last choice green manures, cover crops and fertilizer trees
- 'pseudo-adoption' due to artificial market for seed of green manures or trees

Evaluations conducted in Ghana (Adjei-Nsiah), Kenya (Ojiem), Uganda (Ebanyat), Rwanda (Bucagu), Zimbabwe (Chikowo)

Benefits of S	Soyabean	Residu	ies to	<u> Maize</u>
Soyabean	Stover N added	Maize Grain Yields		
variety	(kg ha ⁻¹)	- stover	(t ha ⁻¹)	+ stover
Magoye	50	1.1		1.5
Nyala	29	0.8		1.0
Maize-Maize		0.4		

Maize yield almost quadripled but it is not enough !!

On farmer's field at Tapera, Hurungwe East 1997/8

Genotype × Environment × Management

$(G_L \times G_R) \times E \times M$

- G_L = legume genotype
- G_R = rhizobial strain
- E = environment

- climate (temperature x rainfall x daylength etc) - to encompass length of growing season etc

- soils (nutrient limitations, acidity and toxicities)

M = management

Economic constraints (in agrosystems)

Niek Koning et al, NJAS 55-3:2008, p. 229-292

Economic constraints (in agrosystems)

Niek Koning et al, NJAS 55-3; 2008, p. 229-292

Important remaining questions

How to identify (un)responsive soils

- farmer dependent?
- Iocation dependent?

Where to get the organic materials

- Low food production/ha →low production of crop residues (with HYV →HI high →relatively less residues)
- Residues have alternative uses: animal feed, building
- Animal diseases \rightarrow no manure

How to find the niches for N fixing legume crops Economic feasibility?

Some additional issues

Competition for land AND water
Animal production as part of the pathway

Competition for land and water in Mozambique

AGENINGENUR

For quality of life

Sugarcane expansion pushing livestock out

Intensification of dairy = motor for devt

Role of livestock in Africa

- Animal power for transport
- Animal power for plowing, weeding etc.
- Saving account
- Investment
- Buffer against problems (e.g. droughts)
- Beef
- Milk (near cities: in highlands: zero grazing based in napier in Kenya; milk production on crop residues and cottonseed in South Mali)

Soil fertility (patterns)

Large heterogeneity of farms and of farmers fields Access, sequence, profitability of technology Infields over outfields; responsive soils Soil fertility management needs integrated approach • ISFM \rightarrow varieties, fertilizer & organic amend. add up N fixing legume crops • Farmers go for direct profit not for soil fertility Niches Soil fertility and technology should provide return on

investments

 Farmers make economically sound decisions → input/output efficiency and prices matter

Some additional conclusions

- Competition for land AND water is part of the dynamics
 → water adds value to land
- Animal production can be part of the development pathway (occupy land in Brazil; DAP & risk mitigation in Africa)
- Instead of "bulk" that has low quality requirements but also low return to labor and low margins why not go for high return to labor: milk, vegetables or spices

Thank you for your attention

Programs

Claims Across Africa Ac Africa

Across Africa

Southern

& Brazil Information on these programs can be found on: www.pps.wur.nl

